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Abstract—In recent years, approaches based on semantic
segmentation have been proposed for road extraction of high-
resolution remote sensing images. However, the computational
complexity of these methods is high, which leads to low inference
speed. To address this issue, we attempt to apply real-time
semantic segmentation methods to road extraction. Nevertheless,
due to the excessive pursuit of inference speed, their lightweight
models do not have sufficient capacity to extract more com-
prehensive road information and the simple decoder structure
has disrupted road connectivity. This paper proposes a novel
network named FRENet for faster road extraction of high-
resolution remote sensing images. More specifically, we propose
a spatial transform fusion module (STFM) that enables the
network to capture more spatial context information with fewer
parameters. We also redesign a new decoder to solve the problem
of road interruptions with acceptable extra computational cost.
Experiment results on two public datasets demonstrate that
FRENet achieves comparable performance to the state-of-the-art
semantic segmentation methods while maintaining much lower
computational complexity.

I. INTRODUCTION

Road extraction is a challenging computer vision recogni-
tion task in the field of remote sensing which has been a hot
research topic in the past decade. In recent years, definitions
of the road extraction task are mainly divided into two types:
one is graph-based methods [1], [2], [3] that iteratively predict
road graphs, which only contain the centerline of each road;
the other is semantic segmentation-based methods [4], [5]
that predict road networks which describe whether each pixel
belongs to the road. The width and outline of each road can
be displayed in the segmentation result, and the road graph,
which is the vectorized representation of road maps, can be
obtained by post-processing the segmentation result.

In some practical application scenarios, the width and
outline of the road need to be known, such as city planning,
car navigations, and road damage assessment. Therefore, it
is necessary to use segmentation-based methods to generate
pixel-level labeling of roads. Each pixel in the remote sensing
image needs to be classified as a road or background in
the road segmentation task. For more accurate segmentation
results, existing methods constantly design larger networks [6],
[4] or use more complex modules [7], but high computational
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Fig. 1: The column on the left is the remote sensing image from
DeepGlobe, and the other columns are inference results. The middle
column is predicted by DDRNet-23-Slim with 8× bilinear interpo-
lation upsampling. The right column is predicted by our proposed
FRENet. Some of the roads predicted by DDRNet-23-Slim are
disrupted into dashed lines, while our results are more continuous
and smooth.

complexity results in insufficient inference speed. The Face-
book team developed an app called MAP WITH AI [8] to fill
more than 300,000 miles of missing roads in Thailand by using
D-LinkNet [5] which is the champion of DeepGlobe Road
Extraction Challenge [9]. Though parameters and MACs of
D-LinkNet are much smaller compared with several classical
semantic segmentation networks, it still took the Facebook
team a year and a half to complete this work. When extracting
roads from a large number of remote sensing images, the
processing capacity of servers is limited by the inference speed
of road segmentation. Although segmentation-based methods
can generate not only road centerline maps but also contour
maps, their computational complexity is unacceptable in prac-
tical applications. Therefore we apply real-time segmentation
approaches for road segmentation to improve the inference
speed of the segmentation-based method.

Recently, some competitive real-time methods aiming at
semantic segmentation of road scenes[10], [11] are proposed.
Some of these methods develop complex lightweight encoders
trained from scratch, one of which, DDRNet [12] hits a new
peak in terms of real-time performance. However, the output
resolution of DDRNet is one eighth of the input resolution.
Although we can make upsampling on the segmentation results
by nearest neighbor interpolation or bilinear interpolation,
roads in the output will be disrupted into dashed lines, which
has been shown in Fig. 1. These disruptions can have a
destructive effect on downstream tasks like road centerline
extraction. Thus it is necessary to eliminate this problem.



To prevent road disruption, the most challenging difficulty
is to make improvements to the network architecture with min-
imal extra computation cost. Because of the limitation of in-
crement on parameters and MACs, we have adopted DDRNet-
23-Slim as our backbone like DDRNet and redesigned the
decoder. We named our new network structure FRENet. To
balance the inference speed and segmentation performance,
the new decoder only has three convolutional layers. We
propose a spatial transform fusion module (STFM) and add
it to the new decoder structure. This module can transform
the input features into different spatial conditions. Then these
transformed features are sent into a shared convolutional layer.
The corresponding inverse transform is performed on each
output of the shared convolutional layer for further fusion. The
network can capture more spatial context information through
performing convolution on feature maps from different views.
And the fusion after inverse transformations gathers these
context information into the output features. Our proposed
spatial transform fusion module has the same parameters as
one convolutional layer. Its computation cost is acceptable
because it receives features with lower resolution and a channel
reduction layer is performed before it. After modification,
our proposed FRENet has comparable inference speed to
DDRNet while maintaining similar performance with larger
segmentation networks.

Evaluation of our approach has been made on two public
datasets. The two public datasets are DeepGlobe [9] and
Massachusetts Roads Dataset [13]. Both of them consist of
high-resolution remote sensing images and high-quality pixel-
wise manually annotated labels. In experiments, we have eval-
uated the road segmentation performance and inference speed
of our proposed network, while some contrast experiments
made on other lightweight networks and real-time segmen-
tation networks have proved the effectiveness of our proposed
network. Evaluation metrics including mean Intersection over
Union (mIoU) and inference iteration per second (FPS) have
shown our approach achieves comparable road segmentation
performance to the state-of-the-art while maintaining much
better inference speed. And our proposed new metric named
Average Path Length (APL) has shown our approach solves
the problem of road interruption.

In summary, our contributions are:

• We have adopted a real-time semantic segmentation
approach for road segmentation and found the road
disruption problem, which can be solved by modifying
the decoder with a bit of extra computation cost.

• Spatial transform fusion module (STFM) has been
designed to capture contextual information from dif-
ferent perspectives. Fusion after inverse transforma
on the output of a shared convolutional layer can
reassemble these contextual information.

• We propose a new metric named Average Path Length
(APL) to evaluate the road connectivity in the seg-
mentation result. Evaluation metrics including mean
Intersection-over-Union (mIoU) and inference iter-
ation per second (FPS) have shown our approach
achieves comparable road segmentation performance
to the state-of-the-art while maintaining much better
inference speed. The comparison results of APL have

shown our approach solves the problem of road inter-
ruption.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is a fundamental task in which each
pixel of the input image should be assigned to the correspond-
ing label. With the rise of deep learning technologies, convolu-
tional neural networks are applied to image segmentation and
greatly outperform traditional methods based on handcrafted
features. Fully Convolutional Network (FCN) [14], an end-to-
end network that is almost composed of convolutional layers,
is the first effective deep-learning method for the task. U-Net
[15] fuses features from encoders and decoders which have the
same shape to combine context information and location infor-
mation. It is mainly used for biomedical image segmentation.
Deeplabv2 [16] proposed an Atrous Spatial Pyramid Pooling
module (ASPP) using different dilation rates to get multi-
scale spatial information. Deeplabv3 [17] and Deeplabv3+
[18] improved the ASPP module and started to use the larger
network as the backbone such as Xception. HRNet [19] has
many high-to-low resolution subnetworks and could get rich
and high-resolution representations by connecting them.

B. Road Extraction

Extracting roads from remote sensing images into binary
pixels is a well-studied task. Traditional methods construct
road maps by various techniques such as utilizing nearby
buildings and vehicles [20], shape factors [21], simulated
annealing technology [22], and distinct spectral contrast and
locally linear trajectory [23]. Minimum spanning tree [24],
higher-order conditional random field [25], [26], and junction
process [27] are also performed to construct road graphs.

Recent works apply deep learning to generate road maps
with higher performance. Zhang et al. [4] apply residual
connections [28] to the U-Net [15] to learn more delicate
features for road segmentation. In the DeepGlobe Road Ex-
traction Challenge, D-LinkNet got IoU score of 0.6453 on the
validation set. The D-LinkNet combines dilation convolutions
[29] and LinkNet [30] to enlarge the receptive field for road
extraction from high-resolution satellite imagery. Compared
with several classical semantic segmentation networks [31],
[18], parameters and MACs of D-LinkNet are much smaller.
Moreover, its performance on road segmentation is much better
than small networks like U-Net [15].

C. Real-time Semantic Segmentation

Real-time Semantic Segmentation is a task demanding for
a short time in the inference stage. Usually, these networks
designed for real-time semantic segmentation need a trade-
off between accuracy and speed. BiSeNetV1 [32] has two
branches (Spatial Path and Context Path) whose features are
merged at the end of the network. BiSeNetV2 [33] improves
it by using global average pooling for context embedding and
proposes attention-based feature fusion. The two pathways in
BiSeNetV1&V2 are initially separate while the two branches
in Fast-SCNN [34] share the learning to downsample module.
CABiNet [35] adopts the overall architecture of Fast-SCNN
but uses the MobileNetV3 [36] as the context branch.



BN
ReLU
Conv

STFM UP
x2

BN
ReLU
Conv

UP
x4

BN
ReLU
Conv

Encoder
𝟏
𝟖

Fig. 2: The overview of FRENet on road extraction. We adopt DDRNet-23-Slim as our encoder whose output resolution is one eighth of
the input resolution. The blue block in the right consists of the batch normalization layer, ReLU layer and convolutional layer. STFM is our
proposed spatial transform fusion module. “UP” denote upsampling layer with bilinear interpolation and the number is the ratio of upsampling.

SFNet [37] proposed a Flow Alignment Module (FAM)
to get better upsampled features than bilinear interpolation.
DDRNet [12] now is the state-of-art method for real-time
semantic segmentation of Cityscapes. It has two branches,
one of which aims to generate high-resolution features. At
the same time, the other captures semantic information by
downsampling and constructs a Deep Aggregation Pyramid
Pooling Module (DAPPM) to adapt to various receptive fields.

III. METHOD

In this section, our description of our approach consists of
three parts: 1) overall architecture of our proposed network; 2)
spatial transform fusion module; 3) objective function of our
method.

A. Overview of Network Architecture

This proposed FRENet is designed for faster road segmen-
tation. Modifications have been made to improve the inference
speed and segmentation performance.

To improve the inference speed, we adopt DDRNet-23-
Slim as our backbone, which evolved from HRNet [19] but
with only two parallel branches. After comparing DDRNet-
23-Slim with other real-time segmentation networks, we have
found that DDRNet-23-Slim is the most suitable backbone for
our task. But its disadvantage is also destructive: disrupting
roads into small broken dashed lines and making the edges of
the road unsmooth because its output resolution is one-eighth
of the input resolution. To address this issue, we have removed
the original segmentation head of DDRNet and redesigned a
new decoder. The whole network architecture has been shown
in Fig. 2.

Our redesigned decoder consists of three convolutional
layers with batch-normalization layers and activation layers
between them and a spatial transform fusion module. We have
not employed more convolutional layers because too many
layers will dramatically decrease the inference speed on GPU

and these extra MACs can also decrease the inference speed
on CPU. Using features extracted by the encoder as its input,
the decoder first uses a 3 × 3 convolutional layer to make
channel dimension reduction. It is more popular to use point-
wise convolution with kernel size 1 to reduce the number of
channels. But we have found the inference speed has not been
influenced by whether we use 3×3 or 1×1 convolutional layer
thanks to GPU acceleration. Rather than 1 × 1 convolutional
layer, 3× 3 convolutional layer can make better performance.

Following the channel reduction layer, we use spatial
transform fusion module (STFM) to make inferences from
different spatial views. Features fused by STFM can capture
more spatial context information, which can be utilized in
subsequent layers. After STFM, the resolution of the feature
maps is upsampled by a factor of two by bilinear interpolation.
Then a 3×3 convolutional layer is adopted in series, followed
by a bilinear interpolation upsampling layer with a ratio of 4.
Finally, the number of channels is reduced to 1 by the last 3×3
convolutional layer, followed by a sigmoid activation layer.

The redesigned decoder can dramatically eliminate road
disruption with acceptable extra computational cost. Some
comparisons of results between DDRNet-23-Slim and FRENet
has been shown in Fig. 1.

B. Spatial Transform Fusion Module

Because of the limitation of extra parameters, we have de-
signed the spatial transform fusion module (SFTM), which has
shown its ability to capture multi-view contextual information.

The STFM receives features produced by the previous
convolutional layer with a reduction in the number of channels.
It transforms the input to three other different conditions by
clockwise rotation, vertical flip and horizontal flip. Therefore
the transformed feature is four times the input. Different from
those methods which expand the size of feature maps on the
“channel” dimension, we expand the size of feature maps on
the “batch” dimension.
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Fig. 3: Structure of our proposed spatial transform fusion module.
The input feature maps are transformed to three other conditions
by rotation and flip. The transformed feature maps and the original
feature maps are fed into a shared convolutional layer. After the
convolution operation and inverse transformation, the element-wise
mean operation produces the output feature maps.

This operation setup permits the convolutional layer to
be shared in forward propagation without extra convolution
kernels. During training, the shared convolutional layer is
forced to capture contextual information from four different
views in total. Its convolution kernels are trained to extract
spatial information from rotated and flipped features, which
means the kernels have obtained rotation invariance and flip
invariance. Besides, these transformations can also expand the
reception field for the convolutional kernel and help them
receive point-wise features from various locations in the whole
feature map.

After feature extraction by the shared convolutional layer,
features are inverse transformed to the original condition. Then
features are fused by element-wise mean. The overall process
is similar to model averaging, but we have not employed other
network architectures but fused features extracted from differ-
ent views. Although the expansion on the “batch” dimension
can cause four times the computational cost of the shared
convolutional layer, the inference speed is not decreased much
thanks to the GPU acceleration. The architecture of STFM is
shown in Fig. 3.

C. Objective Function

Our overall objective function consists of three parts. Here,
Y denotes the target mask with pixel values in {0, 1}. X

denotes the output of our network. y and x represent the pixel
values in Y and X .

LBCE = Ex,y[−y · logx− (1− y) · log(1− x)] (1)

BCE (binary cross entropy) loss is widely used in binary
segmentation. The output of our network has only one channel.
After being activated by the sigmoid layer, values of each pixel
are mapped between 0 and 1 indicating the probability of the
pixel belonging to the road category. The BCE loss is able to
tell the model each pixel should be classified into road category
or background.

LDice = 1− 2|X ∩ Y |
|X|+ |Y |

(2)

We also use dice loss to improve the segmentation per-
formance. Dice loss can calculate the similarity between the
segmentation result and ground truth and give the network
feedback to optimize the network. In Equation 2, |X| is the
reduction result of summing X .

LDis = Ex,xt [(x− xt)
2] (3)

In addition to the objective function between segmentation
results and ground truth, there is also a distillation loss between
segmentation results produced by our network and a pretrained
teacher network. In Equation 3, xt denotes pixel value in
the soft label produced by the pretrained teacher network.
By employing the pretrained teacher network, the student
network is forced to produce similar segmentation results to
the teacher network. Though information from ground truth is
more accurate, soft labels from the teacher network can guide
the student network to converge towards better performance.

Ltotal = LBCE + LDice + λdisLDis (4)

Our overall objective can be described in Equation 4. Here,
λdis is a hyper-parameter, which has been set to 20 during
training.

IV. EXPERIMENT

A. Experiment Setup

Datasets. The DeepGlobe [9] dataset consists of 6226 densely
annotated images and the resolution of each image is 1024×
1024. We have adopted its validation set as our test set because
the ground truth of its validation set and test set are not
released. We upload the inference of our network to the online
test inference for evaluation. The Massachusetts Roads Dataset
[13] contains 1108 finely annotated images for training, 14
images for validation, and 49 images for testing. The resolution
of images is 1500 × 1500. We fill the image to 1504 × 1504
for training and testing.

Implementation Details. To make fair comparisons, experi-
ments using different networks have the same training strategy.
We have used Adam optimizer and the objective function
described in III-C. When λDis in our objective is not zero,



Method
DeepGlobe Massachusetts

Params(M)
mIoU↑ APL↑ FPS↑ MACs(G)↓ mIoU↑ APL↑ FPS↑ MACs(G)↓

D-LinkNet34 [5] 64.58 588.59 37.31 134.23 65.88 911.16 16.52 289.56 31.10
D-LinkNet18* [5] 64.07 539.88 48.11 95.52 65.21 959.17 21.14 206.0 20.99

U-Net* [15] 63.09 522.76 86.13 35.03 63.98 866.66 39.71 78.82 39.50
BiSeNetV2* [33] 62.36 229.21 85.46 49.12 64.11 308.98 38.79 105.96 3.34
CABiNet* [35] 60.32 202.83 99.93 6.78 60.02 223.08 50.12 14.62 2.58
DDRNet-23-Slim* [12] 64.22 281.18 127.24 18.23 64.30 445.25 78.16 39.37 5.69

Ours* 64.40 645.10 111.02 21.68 65.84 1273.86 52.02 46.81 5.74

TABLE I: Quantitative results on two datasets. The first group is the state-of-the-art method for road extraction and the second group is several
lightweight networks and real-time semantic segmentation networks. ↑ indicates the larger the better for this column, and ↓ indicates the smaller
the better. The method is trained with a distillation loss if the method is marked with *. The pretrained teacher network is D-LinkNet34. Due
to the different resolutions of two datasets, the results of FPS and MACs are different.

a pretrained D-LinkNet34 is adopted as the teacher network.
We have done experiments with and without the distillation
objective function. The training lasts for 200 epochs in total.
The learning rate is set to 2e-4 in the first 100 epochs and de-
creases linearly in the second 100 epochs. Data augmentations
including rotating, flipping, scaling and color jittering scaling
and color jittering are utilized. Test time augmentation (TTA)
is used during the testing phase.

Metrics. Mean Intersection-over-Union (mIoU) is used to
evaluate the segmentation performance. For a binary semantic
segmentation task, it can be described in Equation 5. Inference
iteration per second (FPS) is used to evaluate the inference
speed.

mIoU =
TP

TP + FP + FN
(5)

We propose a new metric named Average Path Length
(APL) to evaluate the road connectivity in segmentation re-
sults. We first use a skeleton algorithm to generate masks
containing the centerlines of roads. Then we use Breadth First
Search (BFS) to calculate the number of centerlines in the
mask, Sl. The sum of the number of pixels of all centerlines
is Sp. If the number of images in the test set is n, the APL
value is described in Equation 6. This APL metric is a variant
of average path length similarity [38].

APL =

∑n
i=1 Spi∑n
i=1 Sli

(6)

B. Comparision with State-of-the-art Methods

As can be observed from Table I, our method achieves
a new state-of-the-art trade-off between segmentation perfor-
mance and inference speed on two public datasets. FRENet
achieves 64.40% mIoU on the test set of the DeepGlobe
dataset at 111 FPS and 65.84% mIoU on the test set of the
Massachusetts Roads Dataset at 52 FPS.

Compared with state-of-the-art methods for road extraction,
FRENet reasons approximately three times as fast as D-
LinkNet34 at the cost of a little mIoU loss. FRENet applies the

real-time semantic segmentation method to road extraction and
uses the real-time semantic segmentation method DDRNet-23-
Slim which has the fastest inference speed as the backbone.
Compared with several common real-time semantic segmenta-
tion methods, FRENet has the most outstanding performance
on mIoU and reasons only slightly slower than DDRNet-23-
Slim. With the help of our proposed spatial transform fusion
module, FRENet is trained to be able to capture contextual
information from different views so that it can have sufficient
ability to extract road information and achieves better segmen-
tation performance.

According to the results of APL in Table I and Fig. 4,
FRENet has the best APL scores on both DeepGlobe dataset
and Massachusetts Roads Dataset. The Average Path Length
of FRENet is more than two times as long as DDRNet-23-
Slim, which demonstrates that our method dramatically elimi-
nates road disruption and gets more accurate road edges. Our
redesigned decoder only consists of three convolutional layers
and a spatial transform fusion module. The extra computational
cost of the new decoder is acceptable, which can be seen from
the comparison of inference speed. Compared with state-of-
the-art methods for road extraction, FRENet has a slight mIoU
loss which means it could not detect roads in some areas, but
it has the best road connectivity performance on the roads it
could detect.

C. Ablation

In this section, we conduct experiments on several variants
of our approach to evaluate each component. As illustrated
in Table II, the basic DDRNet-23-Slim without distillation
can achieve 63.81% mIOU and 290.72 APL on the test set
of DeepGlobe dataset at 127 FPS and 63.54% mIOU and
367.33 APL on the test set of Massachusetts Roads Dataset 78
FPS. With the distillation loss, DDRNet-23-Slim can achieve
a gain of 0.41% and 0.76% mIoU over the baseline. This
demonstrates soft labels from the teacher network can guide
the student network to converge towards better performance.

By redesigning the decoder with three convolutional layers,
FRENet without STFM can achieve more than two times APL
compared with DDRNet-23-Slim with the distillation loss.
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Fig. 4: Qualitative results on two datasets. Method names are annotated at the bottom. The first column on the left is the input remote sensing
image. The first column on the right is the result of the teacher.

Configuration DeepGlobe Massachusetts
mIoU APL FPS mIoU APL FPS

A Baseline (λDis = 0 ) 63.81 290.72 127.24 63.54 367.33 78.16

B (A) + λDis = 20 64.22 281.18 127.24 64.30 445.25 78.16
C (B) + new decoder 64.15 610.93 122.82 65.67 1152.73 69.47

D (C) + Conv 64.23 624.47 120.13 65.73 1241.07 63.28
E (C) + STFM (Ours) 64.40 645.10 111.02 65.84 1273.86 52.02

TABLE II: Ablation Study of FRENet on two datasets. The baseline is DDRNet without distillation. “B” represents training DDRNet-23-Slim
with the distillation loss. “C” represents redesigning the decoder with three convolutional layers without STFM. “D” represents replacing STFM
with a single convolutional layer.. “E” represents our model, FRENet.

Although there is a small drop in inference speed, the results
demonstrate that the redesigned decoder structure can better
decode the road information extracted by the encoder and
eliminates road disruption.

To evaluate the effectiveness of our proposed spatial trans-
form fusion module (STFM), we replaced STFM with a single
convolutional layer. The results show that FRENet with an
additional convolutional layer improves a bit on both mIoU
and APL. Compared to a single convolutional layer, the spatial
transform fusion module transforms the input feature maps
to different spatial conditions and the fusion after inverse
transformations gathers these context information into the out-
put features. Results demonstrate the spatial transform fusion
module brings an gratifying improvement on both mIoU and

APL. The comparison results with baseline in inference speed
show that the computation cost is acceptable.

V. CONCLUSION

In this paper, we are devoted to accelerate the inference
speed of road extraction, while maintaining comparable seg-
mentation performance. We have applied real-time segmenta-
tion methods to road extraction and designed a FRENet with
a spatial transform fusion module for faster road extraction of
high-resolution remote sensing images. Experiments on two
public datasets have proved the effectiveness of our method,
which achieves comparable performance to the state-of-the-art
with much faster inference speed.
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